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The critical limit of lattice gaugetheoryobtainedpreviously,andwhich containsa parameter
with dimensionof (mass)

4,reflectingtheboundaryof thefundamentalmodular region,is shown
to be renormalizable.The proof relies on BRS symmetry. It is also proven that the exact
propagatorof the Fermi ghost possessesa 1/(q2)2 singularity at q = 0. The relation of these
resultsto confinement, the gluon condensate,and the fundamentalmodular region of gauge
theoryis discussedbriefly.

1. Introduction

Wilson’s lattice gaugetheoryprovidesa regularizedform of euclideangauge
theorywhich is invariantundera local gaugegroupG. This group is compact,so
lattice gaugetheory has the celebratedproperty that there is no needto fix a
gauge,for examplein numerical simulations.However preciselybecauseof this
local gaugeinvariance,the Wilson ensembledefines a measureon the quotient
space,U/G, of the spaceof configurationsmodulogaugetransformations,which

is the physicalconfigurationspace.It would notbe surprisingif this spaceplayed
an importantrole in the critical or continuumlimit of lattice gaugetheory.

Since thefundamentalwork of Gribov [1], it is knownthat this spaceis bounded
by a horizon. It is frequentlythoughtthat this horizoncannotbe accountedfor in
renormalizableperturbationtheory. Howeverin recentstudiesof continuumgauge
theory [2] and the critical limit of lattice gaugetheory [3], the constraintthat the
functional integral lie insidethis horizonwas implementedby a Boltzmannfactor
exp(—

7H).(The explicit formula is given in eq. (2.1) below.) Here “the horizon
function”, H(A), is a function of the gaugeconnectionA, and y is a new
parameter,with dimensionof (mass)

4.Its valueis not free, but is fixed, y =

by requiringthat the expectationvalue of H havea knownvalueF, determinedby
the locationof the horizon,

g2(H) =F. (1.1)
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Onemay invert this relationand obtain g = g(y), which is a form of the familiar
dimensionaltransmutationwherebythe running coupling constant is substituted
for the expansionparameterg after a perturbativecalculation.

A close analogy exists here between lattice gauge theory and a classical
statisticalmechanicalsystemwith hamiltonian H and energyE, which is equiva-
lent to a Boltzmanndistribution at a temperatureT determinedby <H) = E.

It wasobservedin refs. [2,3] that the perturbativeexpansionof the critical or
continuumlimit of latticegaugetheory, definedin eq.(2.1) below,in powersof the
coupling constant g at fixed y was renormalizableby power counting. In the
presentwork, we shall show that this theory is indeedperturbatively renormaliz-
able, and that the “horizon condition”, eq. (1.1), also renormalizes,in the sense

that it gives a finite relationbetweenrenormalizedquantities,which is moreover
compatiblewith the perturbativerenormalizationgroup. Renormalizabilityshould
notbe a surprise,becausethe propertyof being renormalizableis a consequence

of the insensitivity of the critical limit to short distancestructure.On the other
hand,it is a valuableconsistencycheckon the hypothesesof ref. [31,by which the
critical limit of lattice gaugetheorywas derived, that renormalizabilitydoeshold.
Also in the presentwork, somespecific consequencesof thesehypothesesare
verified, as is explainedin the concludingsection,wherevariousphysicalimplica-

tions arealso discussed.
In zerothorderperturbationtheory, the gluon propagatoris givenby k2[(k2) +

Ny4]1, for SU(N) gaugetheory. There is no pole at k = 0, so the gluon is
destabilizedby the horizon. This propagatorwas originally found by Gribov [1],
andwasalso obtainedin ref. [41as a non-perturbativesolution of the Schwinger—
Dyson equationswithout a horizon. The relation of this type of propagatorto
confinementis discussed[3—5].We refer to ref. [31for a detaileddiscussionof the
horizon in lattice gaugetheoryandfor furtherreferences.

In sect. 2 the non-local Boltzmann factor is expressedas an integral over
auxiliary or ghost fields with a local action. In sect. 3 the BRS symmetryof the
dimension-4part of the local action is exhibited. The remaining, lower-dimen-
sional,piecesof the action are treatedin sect. 4 by the method of local sources,
with local sourcesalso introducedfor the BRS transformsof theseremaining
pieces.In sect. 5 a theoremis derivedwhich gives the explicit dependenceof the
effectiveactionon the ghost fields. In sect. 7 the theorywith y arbitrary is shown
to be renormalizableby solving the standardcohomologyproblem,and in sect. 8
the horizon condition is shown to renormalize.In sect. 9 the energy—momentum
tensorI~ is derived,andit is explainedwhy the gluoncondensate<TAA) may be
perturbativelycalculablein the presentscheme.In sect. 10 we shall show that the
exactpropagatorof the fermi ghost field hasa 1/(q2)2 singularityat k = 0. This
comesfrom an exact cancellationof the tree-level contribution to the inverse
propagatorby the quantumcorrections,whenthe horizonconditionis satisfied.In
theconcludingsect. 11, we briefly discusssome physicalimplications of this result
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for confinement,what it tells us aboutwhich configurationsdominate the func-
tional integral, andto what extentthe hypothesesof ref. [3] areverified.

2. Localaction

It wasfound in ref. [2] that the partition function of a continuumnon-abelian
gaugetheorymay bewritten in the form

Z = fdA exp(—S.~— yH)8(t9 .A) det(M), (2.1)

and in ref. [3] a lattice-regularizedanalogyof this expressionwasobtained.Here
SYM is the Yang—Mills action,and M = M(A) is the Faddeev—Popovoperator,

definedby

= 3. (D~cçoc)= _d [(~5ac3 ~ (2.2)

where~ is a Lorentz index, ço’~is any field that transformsaccordingto the adjoint
representationof the structuregroup, and f0”~ are the structureconstantsof a
semi-simpleLie groupwhich will betakento beSU(N). Apart from the term -yH
in the action, formula (2.1) is the familiar Faddeev—Popovpartition function. The
horizon function H is definedby

H=— (A, M~A) fdDxfcA~(M_1)f~A~ fd’~xh(x), (2.3)

whererepeatedindicesaresummedover, and h(x) is the horizonfunctionperunit
volume. Becauseof translation invariance, the horizon condition (1.1) which
determines‘y reads

g2(h) =fm (N2 — 1)D. (2.4)

Here(N2 — 1) is the dimensionof the adjointrepresentationof SU(N), and D is
the dimensionof euclideanspace-time,so f is the numbercomponentsof
which is also the numberof degreesof freedomper latticesite. The coefficient g2

occursbecausethe classicalconnectionhas beenwritten gA. Formula (2.1) is
understoodto be definedby its powerseriesin g, calculatedby gaussianquadra-
ture with dimensionalregularization.

[We give abrief word abouthow this expressionfor the critical limit is derived.
Although it wasoriginally obtainedin continuumquantumfield theory [2], it must
be said that quantization of a gaugefield in the continuum is not really a
well-defined problem mathematically. Wilson’s lattice gaugetheory provides a
satisfactoryquantizationand gauge-invariantregularization.To obtain its contin-
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uumlimit, which is its critical limit, a gaugemust be chosenwhich makesall link
variablesas closeto unity aspossible.To do this in anoptimal way, equitablyover
the wholelattice, in ref. [3], the quantity

I[U] ~ [i—N~ Tr(UL)],

was takenas a measureof the deviation of the link variables from unity in the

configurationU. Herethesumextendsover all links L of the lattice,and UL is the
variable (an elementof the SU(N) group) associatedto the link L in the
configurationU. The continuumanalogof this expressionis the Hilbert norm of
theconnectionA, I[A] = Jd’~xA(x) 2 The gaugewaschosenwhich makesthis
quantityan absoluteminimum. In this gauge,the function

F~[g]mI[U~],

where U~is the gaugetransform of the configuration U by the local gauge
transformationg, is an absoluteminimum at g(x) = 1 with respectto all local
gaugetransformationsg = g(x). At a minimumthis function is stationary,and its
secondvariation is positive. Thesepropertiesimply that 3 ~A = 0, and that the
Faddeev—PopovoperatorM(A) is positiveM(A)> 0. The first condition is known
as the Landau gaugecondition, and the seconddefines the Gribov region. We
refer the readerto ref. [3] for detailson how the Wilson action in thisgaugeleads
to the partition function (2.1). Although, as mentioned,the derivation requires
hypotheses,theymay at leastin principle be verified by numericalsimulation and
numericalgaugefixing on the lattice, andsomeof their consequencesareverified
in the presentwork, as is discussedin sect. 11.]

In order to prove renormalizability of the theory defined by the partition

function (2.1), we rewrite it in termsof a local action by integratingoverauxiliary
fields. Becausethe indices j.t and c are mute in the horizon function (2.3) it is
convenientto introducethe notation

A1°mA~° fatcAb (2.5a)

Here we havewritten the singleindex

i (pt, c) (2.5b)

for the pair of mute indices, and I takes on f= (N
2 — 1)D values. For the

Boltzmannfactor,wehaveby gaussianquadrature,

exp[—y(A, M’A)I = [det(M)]”fd~ d~*

xexp[_(~’*, M~’)—y’/2(A, ~_ç*)]. (2.6)

Here ~ (~+ i~
2)/V~and ~ (~— i~~2)/V~area pair complexfields with
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componentsq’,(~= ~ where ~.t is a Lorentz index and a and c are in the
adjoint representationof the SU(N) group, andsimilarly for a”, and

(A, ~ — ~*) fd’~xAf(~— ~ (2.7)

(~*,Mq~) fd”x ~ * aMab~,b (2.8)

The coefficient [det(M)]1in eq. (2.6) appearsbecausethe mute indicesin the last
expressiontakeon f values.To obtain a local expression,we write [det[M)]1by
meansof gaussianquadratureover pairs w and w * of Grassmannfields

exp[—y(A, M~A)]

= fciq d~’*dto do* exp[_(~*,Mp) + (w*, Mw) — y~/2(A,~ — ~ (2.9)

Here w and w’~’ are independentGrassmannvariables that have the same
componentsas ~ and~‘ ~,namely w

1a = w~’~and w *1a = ~ *1~a~Finally we usethe
standardrepresentationfor the Faddeev—Popovmeasureandobtain the desired
local expressionfor the partition function (2.1), namely

ZJdA dC dC* dA d~d~*dw dw* exp(—Sv), (2.10)

where

S~—SyM—(A,c3.A)_(C*, MC)+(q,*, Mip) _(w*, Mw) +y”
2(A, ~

(2.11)

Here c” andC * a arethe usualpair of Faddeev—PopovGrassmannghosts,and A
is an imaginaryLagrangemultiplier which enforcestheconstraint3 A = 0, charac-
teristicof the Landaugauge.(Wegenerallyfollow thenotationof ref. [6].)In terms
of thesevariables,the horizon conditionreads

g2(Af(x)pf(x) )= _g2(Af(x)~*
1~1(x)~=f~~

1/2= (N2 — 1)D
7

1/2. (2.12)

3. BRSinvariance

If one setsy = 0, oneshouldobtainatheorywhich is equivalentto the Faddeev
Popovtheory.Toverify this point, considerthe local action (2.11),with y set to 0,

~~ SYM — (A, ~.A) — (C*, MC) + (q,*, Mq) — (w*, Mw). (3.1)
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This actionhasa pleasantsuper-symmetrybetweenthe f pairsof Boseghostsand
the f + 1 pairs of Fermi ghostswhich acts on their lower indices. It also enjoys
BRS invariance.To seethis, let a BRS transformationbe definedby

sA=DC, sC=-(g/2)CxC,

sC*=A, sA=0,

s~-p=w, sw=0,

sw*=~*, s~*=0, (3.2)

which is nilpotent, s2= 0. Let S
0 be the action definedby

So~SyM+sH(C*,3.A)+(w*,M(p)1, (3.3)

which satisfies

sS0=0. (3.4)

Since S0 differs from SYM by an exact BRS transform,we know from general
argumentsthat for gauge-invariantobservablesit givesthe sameexpectationvalues
asstandardFaddeev—Popovtheory, providedonly that the theorydefinedby S0 is
well defined,as we shall demonstrate.Keepingin mind that s anti-commuteswith
Grassmannfields, andthat A is buried in M = M(A) = 3 . D(A), onefinds

S0 = S~,— (A, 3 .A) — (C*, MC) + (~* M~~)— (w*, Mw) _g(aw*, (DC) x q~).

(3.5)

This expressiondiffers from the action S1 aboveby the presenceof the last term.
However, we may and shall transformthe action S1 into S0 by a shift in the
variable w

w’~w+M~g3~[(DC) x~}, (3.6)

while keeping w* fixed. Thus, after dropping the prime, the partition function
reads

Z=fdcP exp[_So_y1/2(A, ~_~*)], (3.7)

where dcP representsintegrationover all fields, as in eq. (2.10). The full action
which appearshere is not BRS invariant. Howeverthe term proportionalto yl/

2

whichbreaksit is only of dimension2 insteadof 4. We shallshow,by introducinga
local sourcefor it, that correlationfunctionswith this compositefield are renor-
malizable.
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It is sometimesthought, erroneously,that BRS invarianceis a form of gauge
invariance, so some readersmay conclude that the term in the action which
violatesBRS invariancemeansthat a horrible gauge-violatingerrorwas made.To
avoid possibleconfusionon this point, weemphasizethat gaugeinvariancewas in
fact lost (more precisely,it was fully exploited)whenthe gaugewas fixed in an
optimal way, as describedin the sect. 2. Moreoverthe theorywith the parameter
y, whoserenormalizabilitywe wish to establish,doesnot representa gaugetheory
at all, exceptwhen y is assignedthe value determinedby the horizon condition,
andthisvalue is known only after calculationsin the moregeneraltheory. On the
otherhand,BRS invarianceis a new and useful symmetrythat ariseswhenevera
s-functionandits accompanyingjacobiandeterminantare representedby integrals
over a largerset of Bose and Fermivariables.The BRS transformationincreases
the fermion numberby one,so it is defined only in the larger space.The BRS
transformationmay be isomorphic to an infinitesimal gaugetransformationin
somecases.The relevantissue is not whetherthe full action is BRS invariantbut
whetherit is renormalizable.We shall seethat it is sufficient that the dimension-4
part of the action be BRS invariant. This allows unambiguous,renormalizable
calculationswith local sourcesfor lower-dimensionalBRS-violatingfields that may
be elementaryor composite.

The actionS~possessesa U(1) symmetrywhich correspondsto conservationof
ghost-fermionnumber.We assignghost-fermionnumber1 to the fields C and w,
and ghost-fermionnumber — 1 to the fields C* and w~ All other fields arebose
fields with ghost-fermionnumberzero. The BRS operator defined in eq. (3.2)
increasesthe ghost-fermionnumber by unity, and is nilpotent. [The spaceof
functionsof the fields,which is the sumof all spaceswith fixed integerghost-ferm-
ion number, is isomorphicto the spaceof differential forms,wherethe degreeof

the form is the ghost-fermionnumber.A slight generalizationis required,because
the starred ghost-fermionfields are assigneddegree-i.Just as Cartan’s exterior
derivativeincreasesthe degreeof forms by unity, the BRSoperators increasesthe
ghost fermion number by unity.] The action S~also possessa U(f) symmetry,

wheref= (N~— 1)D, by which the fields ~,, ~ w1, andw’~’1 are transformedon
their lower index i = (j.~,a) in an obviousway.

The two actions S~and S1 differ by the vertex g(ow*, (DC) x q). This vertex
increasesthe C-numberby unity and decreasesthe w-numberby unity, whereas
the remainderof the actionseparatelyconservesthe numberof theseFermighost

fields. The importantpoint aboutthis new vertexis that it appearsin the action
without its complex conjugate.Consequently,althoughthe action doesnot con-
serve the C-number and w-number separately, it has the property that the
C-number is non-decreasingand the w-number is non-increasing.It follows that
the new vertex contributesprecisely n times in matrix elementsor correlation
functionswherethe C-numberincreasesby n andthe w* numberdecreasesby n,
andnot at all in matrix elementswhere n is zero. Thus, for example,this vertex
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does not contribute at all to the horizon condition (2.10) in which n is zero.
Moreoverfor the matrix elementsin which n is zero, the actions S~and S1 give
equalvalues.Matrix elementswhere n is negativevanish.We call this new vertex
the “C-ghost increasingvertex”.

Observethat the term (A, ~*) which appearsin the actionmay bewritten

(A, ç*) =s(A, w*) — (DC, w*). (3.8)

We eliminate the last term by a linear shift in the w variable (while w* is kept
constant),so that the partitionfunction is given by

Z=fdf~Pexp(—SPh) (3.9a)

Sph=So+yV
2[(A, ~,)—s(A,w*)], (3.9b)

whereS~is given in eq.(3.5). This shift in ~ by a term proportionalto w*C does
not affectexpectationvaluesof matrix elementsin which theseghostnumbersdo
notchange,as we havejust discussed.

4. Sourcesfor compositefields

The partitionfunction (3.9) containsthe BRSviolating termof dimension2. We
would like to treat it as in operator insertion in the BRS conservingtheory.
However, a direct expansionin powers of this term would lead to infrared
divergences.For this reasonit is convenientto introducea local sourcefor this
term, renormalize the ultraviolet divergencesand resum. We follow here the
method by which the m2çc2 term is treatedas an insertion into the masslessq/~
theory, as describedin section8.10 of ref. [6].

Thereis considerablefreedomin the choiceof local sources.We shall introduce

those local sourceswhich will allow us to solve the equationsof motion of the
ghostfields. Note that the term

y1/2(A, (I:’) y1/2fdDx (fabcAb(pa)(x)

whichappearsin the action may alsobe written

y1”2(A, ~)= _g_1y1/2JdDxD~acc~ac(x), (4.1)

wherethe covariantderivativeis definedin eq. (2.2), becausethe integral of an
ordinaryderivativevanishes.We shall introducea sourceM,~”(x) for eachcompo-
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nentof (D~,1)’
2(x)= D,~”~f(x), andsimilarly a sourceN,~f(x)for D,~w*f(x). We

also introduce sources U~f(x)and Va(x) for the BRS transforms of these
quantities, s(D~~)’~(x)and s(D~w*~)~2(x).Sourcesfor D~* and Dw will not
neededbecausethey are closely relatedto sDw* andsDtp. Note that M andV are
Bose fields, whereN and U areFermi fields, whichhaveghostnumber1 and — 1

respectively.
As is customary,we also introduce sourcesK and L for the composite BRS

transforms of the elementary fields A and C, namely for DC = sA and for
—g/2Cx C = sC. Thus we are led to consider an extended action S which

dependson all theselocal sources,

—S —S
0 + (K, DC) + (L, —g/2C XC)

+(M, DQ) + (Dw*, N) + (U, sDço) + (sDw*, V), (4.2)

where S~is the BRS-invariantaction given in eq. (3.5). We shall show by the
techniqueof local sourcesthat correlationfunctionswith insertionsof suchfields
are renormalizable.The original action ~ given in eq.(3.9) is regainedwhen the
local sourcesareassignedthe physicalvalues

MPh ~Vb(x) 1~h,~LVb(~1)~ (4.3)

KPh=L~h=NPh=UPh=O. (4.4)

Herewe haverestoredthe notation(v, b) = i, andwritten MPh~Vba(X)insteadof
andsimilarly for

1’,h•

5. Solution of the ghost field equationsof motion

To obtain the generatingfunctional of correlationfunctions,we also introduce
local sourcesfor all the elementaryfields,

Z=exp W=fdcli exp(—~), (5.1)

where

—~ —S + (J, A) + (~* C) + (C*, ~)+ (1, A)

+(p*,q~)+(q,*,p)+(g*,w)+(w*,~), (5.2)

and S is given in eq.(4.2). Renormalizationis mostsimply describedin terms of
the effective action F which is the Legendretransform of the generatingfunc-
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tional of connectedcorrelationfunctions W= In Z,

F(A, C, C*, A, ~, ~ w, w*) + W(J, 11, ?J”, 1, p, p~,o~,

= (J, A) + (i~*, C) + (C*, ~)+ (1, A) + (p*, q~)+ (ç~*,p) + ~ w)

+(w*,o), (5.3)

where

A = 6W/6J, J = ~F/3A

C=8W/3~*, ~7*= —U’/~5C,

C* = ~ r~ = 6F/~C*,

A = ~W/~1, I =

co=~W/öp*, p*~F/~,

= 5W/6p, p =

w=6W/6o.*, u~ —i~F/&o,

= —~W/~r, cr=t5F/~w*. (5.4)

The minus signs appearbecausethe derivatives of Grassmannvariables are
defined to be left derivatives.The sourcesof the compositefields are constant

parametersunderthis Legendretransformationandwe have

6F/6K= —~W/~K, ~F/6L = —~W/~L,

~F/~M= —6W/SM, 6F/~N=—~W/6N,

~F/6U= —6W/ÔU, ~F/~V= —8W/~V. (5.5)

Before using BRS invarianceto prove renormalizability, we shall establish a
propertyof the effectiveactionwhich greatlysimplifies this task. It is possibleto
solve the equationsof motion and determinethe completedependenceof the
effective action F on the six fields A, C*, ~, ‘, w and w~.

Theorem5.1. The effectiveaction is of the form

F=S+1~~(A,C, L, K’, M’, N’, U’, V’), (5.6)

where S is givenin eq. (4.2), andthe primedvariablesaredefinedby

K~wK+3C*_g(U+aw*)Xço_gw*XV. (5.7)

M~~M_3ço*, N’~N+3w,

U~~U+3w*, V’~V—3co. (5.8)
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Remark1. The solvability is a particular propertyof the dynamicsof these
fields, and does not follow simply becausewe have introduced a plethora of
sources.Indeed,if a sourceis also introducedfor DC* andits BRS transform, the
equationsare no longersolvable.Theorem5.1 showsthat the introductionof the
sourcesfor the compositefields doesnot complicatethe dynamics,but is a natural
structure.

Remark2. We haveintroduceda local source~ for D~ço~= 3~+ gA~X ço~.

However the only changein F, as comparedto a source M,2~for gA1~X tp~,is
simply the additive term (M, 3ç), and similarly for the otherghost fields. For let

* be an independentsourcefor ~, so that,with suppressionof other fields,

exp W(p*, t*) =fdq, exp[_S+(p*, q~)+(t*, ~)},

andwe have3W/dp* = 3W/ôt~ Now makethe Legendretransformationfrom p *

to ~ at fixed t”,

F(~’, t*) = (p*, q~)— W(p*, t*).

This gives 0F(q~, t*)/dt* = _3W(p*, r*)/,9t* = _ÔW(p*, t*)/Bp* = —~, and
we have

F(ç, t*) =F1(q~)— (t*, ~),

where F1 is independentof t ~ Upon setting t * = 3 . M, we obtain the relation
betweenthe effective action F(~)with source term (M, Dq), and the effective
action F1(~)with sourceterm (M, gA X ~),

F(q) =F1(q~)+(M,
3q).

The term (M, 0~)is containedin S. Thereforethe derivativesof Fqu with respect
to M give insertionsof gA X ~‘. Of coursethis is just anillustration of the fact that
F is the generatorof one-particleirreduciblecorrelationfunctions.

Remark3. The appearanceof the derivativeof the ghostfields in eqs.(5.8),
but not the ghost fields themselvesmakesmanifestthe factorizationof incoming
andoutgoingghostmomentafrom all proper(C-ghostconserving)diagrams,which
is a well-known propertyof the Landaugauge[7]. (Theappearancein K’ of the
undifferentiatedghost fields comesentirely from the C-ghost-increasingvertex).
This reducesthe degreeof divergenceof diagrams,and is presumablythe reward
for the optimal gauge-fixingdescribedin sect. 2, wherebythe fluctuationsof the
A-field are minimized. In particular, the ghost-ghost-gluonvertex is finite (after
insertion of divergentsubdiagrams),and the correspondingrenormalizationcon-
stantmay beset to unity Z = 1. Forby virtue of the theoremwe have

53F/~p*(x)3tp(y)~A(z) 3x.3Y.6F/~3M(x)~5V(y)6A(Z).
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By remark 2, the last expression represents insertions of gA x ~(x), gA X q, * ( ~,)
and A(z).

The remainderof this section is devotedto the proof of theorem5.1. For the
field A we have

0=fthP 6/GA exp(—~), 0=fd~P(3.A+1) exp(—~),

0=(a~6/6J+I)Z, 0=3~W/~J+I.

This gives

8F/3A= —ô~A, (5.9)

which hasthe solution

F= —(A,3.A)+F1, (5.10)

where F1 is independentof A.
For the field C~, we have

0 = fdcP ~/~C* exp(—i), 0 = fd~P(3. DC + ~)exp(—i),

0=(—3~/~K+i1)Z, 0=—3~W/3K+r1.

This gives

~F/6C*= —ö~F/6K, (5.11)

whichhasthe solution

F=F(K+3C*), (5.12)

giving thecompleteC* dependence.From eq.(5.10),we get

F= _(A,3.A)+F1(K+oC*). (5.13)

For the field ~ ~, we have

0=JcWi ~/8~* exp(—~), 0=fd~b(8.Dp+p—D(A)~V) exp(—.E),

O(3.6/~M+pD(5/ôJ).V)Z, 0=3~8W/6M+p—D(&W/öJ)4”.

This gives

oF/~* 3.5F/~5M+D(A) . V, (5.14)
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which hasthe solution

F= _(Dq*, V) +F2(M_3~,*), (5.15)

giving the completedependenceon ~. From eq. (5.13), we get

F= —(A,3.A) — (D~*, V) +F3(M_3~*, K+3C*). (5.16)

For the ~‘-field, we have

0= fd~ 3/6q exp( —~)

=fdp(D.acp*+p*+gaw*X(DC)_D(A).M+gUXDC)exp(_~)

=fd~p[a.(Dço* +gDCXW*) —(3~gA)X~* +p” _gw* Xa~(DC)

—D(A)~M+gUXDC] exp(—~)

= fd~[a. (sDw*) —g(~5/t~A—1) X ~ +p” +gw* X (8/~C* — q) —D(A) M

+gUX~/6K} exp(—~).

The exactderivativesintegrateto zero,andwe obtain

0= (3.~/t5V+gIX~/~5p+p” +g’r~X~/~r—D(~/3J)~M

+gU X

~

+gUX~W/~5K

~F/6~ =8~5F/5V+gço* XÔF/~A+gôF/.SC* Xw* +gUx~F/3K+D(A) ~M.

(5.17)

From t5F/~A = —3 . A, this gives,for the completep-dependence,

F= _(ç*, (dgA) X~) —(M, Dço) +F4(V—dço, K—gUXq~,C* _gw* X~).

(5.18)
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We set

F4(V—3~,K—gUX~,C* _gw* X~)

~(Dq,*, ~ V)+F5( V—3~,K—gUX~,C* gw* X~),

where F5 is a new arbitrary function, and obtain the alternateexpressionfor the
complete q~-dependence

F= (aw* —M, Dq’) — (Dço*, V) +F5(V—3co,K—gUXço,C* _gw* X~).

(5.19)

Uponcomparisonwith eq.(5.16),we obtain

+F6(V_3~,M_3~*,K_gUX~+3(C*_gw*X~)), (5.20)

which gives the complete A, C*, ~‘ and ~ dependence. Because F6 is a generic
function of its arguments, this may also be expressed as

F~ —(A, 3A) + (3~,* —M,Dq) — (D~*, V)

+F7(V—3~,M_a~*,K_g(U+aw*) Xq~+0C* _gw* X V), (5.21)

where F7 is another generic function of its arguments.
For the ~ field, we have

0=JdP 8/&o* exp(—2),

0=fthD[_0.(sD~,)+u_D.N+gDCXV]exp(_~),

0=[—3~3/6U+r—D(5/8J)~N—gVx5/i~K]Z,

0= 3.6W/6U+D(6W/~J)~NgJ/X8W/~5K.

This gives

5F/~w*= ~3. t5F/5U—gVX~F/6K+D(A) ~N, (5.22)

which hasthe solution for the completew’~’dependence

F=_(Dw*,N)+F8(U+aw*,K_gw*XV). (5.23)
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By comparisonwith eq.(5.21),we get

F= —(A, 3.A) + (3~*—M, Dq~)— (Dq,*, V) — (Dw*, N)

+F9(V_,3q,,M_3(p*,U+3w*,K~). (5.24)

where K’ is definedin eq.(5.7). We set

F9(V—3ço,M_3ç0*, U+3w*, K’) _(U+dw*, Dw)

+F10(V—0p,M_dço*, U+3w*, K’),

where F10 is a new generic function, and obtain

F= —(A, a.A) + (3~*—M,D~)— (Dq,*, V) — (Dw*, N) — (U+3w*, Dw)

+F10(V—dp, M_ac*, U+3w*, K’). (5.25)

For the co-field, we have

0 = fdcE~~/6w exp( —~)

o=fd~(D.aw* —o~+D(A) . U) exp(—~)

0=~fdcP(a.Dw*—g3~AXw* —o~+D(A) . U) exp(—~)

o=fd~[o.Dw*_g(~/~A_I)Xw*_cr*+D(A).U] exp(—~)

0=[_3/~N_g1X6/_cr*+D(5/8J).U]Z

0= ~

wherethe integralof an exactderivativewasset to zero. This gives

~F/~w= _3F/t~N_g5F/5AXw*_D(A).U, (5.26)

which, with 8F/6A = —3 ~A, hasthe solution

F=(w*, g3~AXw)—(U, Dw)+F11(N+öw), (5.27)

giving the completeco-dependence.We set

F11(N+dw) _(Dco*, N+3w) +F12(N+3w),
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where F12 is a new genericfunction, andobtain the alternateexpressionfor the
completeco dependence,

F= _(0w* +U, Dw)_(Dw*, N) +F12(N+ôw). (5.28)

By comparisonwith eq.(5.25),we get

F= —(A,3~A)+ (3~*—M, D~)— (3w* + U, Dw) — (Dq*, V) — (Dw*, N)

+F12(V—äcp,M_acD*, N+Bw, U+dw*, K’). (5.29)

Finally,we set

F12(V—3~,M_3~*,N+3co, U+3w*, K’)

—=SYM—(K’,DC)—(L, —g/2CXC)

+Fqu(V~B(P,M_aço*, N+0w, U+ôw*, K’), (5.30)

andthe theoremfollows.

6. BRS identitiesfor the effective action

Wenext derivetheBRS identity for theeffective actionby standardprocedures.
We havefrom eqs.(4.2) and(5.2)

0=fd~Ps exp(—~)

= fd~[(M, sD~)+ (sDw*, N) + (J, sA) — (~*,SC) + (A, ~)+ (p*, co)

+(~*,a)} exp(—~)

= [(M, ~/SU) + (~/~V,N) + (J, 6/5K) — (~*,~/~L) + (~/6l,~j)

+(p*, ~/~.*) + (

6/np, cr)JZ

0 = (M, 5W/6U) + (~W/~5V,N) + (J, ~W/~K) — (~*,~W/6L) + (5W/61, ~)

+(p*, 5W/&r*) + (3W/5p, u).
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This gives the desiredidentity satisfiedby F,

(~F/6A,5F/t5K) + (~F/6C, ~F/~L) — (A, ~F/~C*) — (~F/6q,w)

_(~*, ~F/6w*)+(M, 6F/~U)+(5F/~V,N)=0. (6.1)

Thisidentity is geometricalin naturein the sense that the coupling constant g
nowhereappearsin it. Moreoverit is satisfiedorder by order asa powerseriesin
g. In particularit is satisfiedat orderg°for which F = 5, so the identity is satisfied
by S itself, as may be verified by explicit calculation.We write F = S + [~, andit
follows that Fqu satisfies

~Fqu/6A, ~Tqu/~K+ (6Fqu/6C, ~Fqu/6L) + = 0, (6.2)

where

r~ (65/6K, 6/6A) + (65/6A, 6/6K) + (65/6L, 6/6C) + (6S/6C, 6/6L)

—(A, 6/6C*) — (w, 6/6~’)— (~*,6/6w*) + (M, 6/6U) + (N, 6/6V).

(6.3)

The fact that identity (6.1) is satisfied by S implies that u is a nilpotentoperator,
= 0. (To see this, note that identity (6.1) which is satisfiedby S is of the form

3S/3x~3S/3~~+ ~,3S/3y1+ z~3S/3~~= 0, (6.4)

where x, y and z and ~, i~, and ~ are three setsof Bose andFermivariables,and
that a- is the differential operator

= 3S/3~3/3x1+ 3S/3x~3/
3~~+ ~d/3y~ + z~3/3~~. (6.5)

It is easy to verify by standardarguments[6,7], that eq. (6.4) is a sufficient
conditionfor a- to be nilpotent.)

In sect.5 we showedthat ~ dependson thesix fields A, C’~,~, w, and w”
only through the dependenceof the primedvariables,defined in eqs.(5.7) and
(5.8), on thesefields. It is natural to expressthe BRS identity in terms of the
primedor “reduced”set of variables.Forthispurposeit is helpful to introducethe
action

~5YM + (K’, DC) + (L, —g/2CX C) — (M’, V’) + (U’, N’), (6.6)

whichdependson the samevariablesas F~namely,5’ = S’(A, C, K’, L, M’, N’,
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U’, V’). Wealso definea BRSoperatora-’ in termsof thereducedsetof variables
by analogywith eq.(6.3),

a-’ (6S’/8K’ 6/6A) + (65’/6A, 6/6K’) + (t55’/6L, 6/6C)

+(6S’/6C, 6/6L) + (M’, 6/6U’) + (N’, 6/6V’). (6.7)

Onemay verify that the BRS identity, eq.(6.2), satisfiedby Fqu may be written

(6Fqu/6A,6Fqu/6K’) + (6Fqu/6C,6Fqu/6L) + a-’I~= 0. (6.8)

Becausethereis no couplingin theaction 5’ betweenthe sourcesM’, N’, U’ and
V’ and the other variables, the solution to this equation, which determines

possibledivergences,hasa trivial dependenceon thesevariables.

7. Renormalizability

Feynmanrules for calculationwith the action (3.9) or (5.2) areeasily derived,
andwe shallnot trouble to give them explicitly. They areslightly differentfrom the
ones given explicitly in refs. [2,3], where f was assumedeven, and f real Bose

ghostsand f/2 pairsof Fermighostswere introduced.In particular,for the action
(3.9), in additionto the A—~and A_~*propagators, there are non-zero ~ and
~ propagators.Neverthelesspower countinggives the sameprimitive diver-

gencesas found in refs. [2,3].
Powercounting in Feynmanintegralsfixes the dimensionsto be assignedto the

fields. Theseremain to someextent arbitrarybecauseof conservationlaws which
follow from the U(1) X U(f) symmetryof S~,andthe arbitrarinessmaybe fixed by
convention.The dimensionof the propagatorsgives the following conditionson
the dimensionsof the fields

[A] = [ç] = [q*] = 1, [A] = 2 (7.1)

[w] + [w*] = [C] + [C*] = 2. (7.2)

A symmetric andtraditional assignment,that would give dimension1 to all ghost
fields,would give dimension5 to the C-ghostincreasingvertex,the lastterm of S~,
eq. (3.5),which would suggestthat this vertexis not renormalizable.However,such
an assignmentignores the reduction in the degreeof divergenceimplied by

theorem5.1. The C-ghostincreasingterm is in fact safely containedin the term
(K’, DC) of 5’, eq. (6.6), and its renormalizationis assured.As a result of this
reductionof divergence,dimension4 is also assignedto the C-ghostincreasing
vertex, andthis providesthecondition

[w*]+[C]=1. (7.3)
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It is convenientto fix the remainingarbitrarinessin dimensionsof the elementary
fields by requiring that the BRS operators doesnot changedimension. [This
impliesincidentally that s commuteswith the generatorof dilatations(seesect.9).]
Thenfrom eqs.(3.2) and(7.1) we obtain

[co] = [w*] = 1,

[C]=0, [C*]=2. (7.4)

Thesedimensionsalso imply conditions(7.2) and (7.3). The dimensionsof the
compositefields are then fixed,

[K]=3, [M]=[N]=[U]=[V]=2. (7.5)

Feynmanintegralsmaybeevaluatedby dimensionalregularization.As usualthe
coupling constantg is replacedby gp9)— 4)/2, wherep. plays the role of renormal-
ization mass.

We now discussthe recursiveconstructionof counterterms which cancelthe
divergences,following the approachof ref. [7], pp. 599 to 604. This will be done in
two steps. In the first step we shall establish renormalizability in terms of the
reducedset of fields introducedin sect. 5. In the secondstepwe shall establish
renormalizabilityin termsof the original setof fields.

At loop order 1, the divergentpiece,~ is a local function of the reducedset
of fields and sourcesof dimension4 that satisfies

a-’F~
1~=0. (7.6)

By conservationof ghostnumberandU(f) invariance,the dependenceof F~1~on

the sourcesM’, N’, U’ and V’ is of the form c4(M’, V’) + c5(U’, N’), where c4
and c5 areconstants.The last equationimplies that F~is of the form

T~V= ~ + c4[(M’, V’) — (U’, N’)] (7.7)

—l~iiV,Fp+a-c4(U, V’), (7.8)

where F~VFp satisfies eq. (7.6), but dependsonly on the fields that appearin
Faddeev—Popovtheory. According to standardarguments[7], it follows from eq.
(76) that ~ is of the form

1~JIVdl5YM~2[(65YM/6A, A)+(K’, BC)]

+ c3[(L, — ~gCXC) + (K’, DC)] + c4[(M’, V’) — (U’, N’)],

whichmay be written

= C1SYM+ t~[c2(K, A) + c3(L, C) + c4(U’, V’)]. (7.9)
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The ghost—ghost—gluonvertex is finite in the Landau gauge[7], as is shown
explicitly by remark3 of sect.5, so

c3=0. (7.10)

This is equivalentto thewell-known result in the LandaugaugeZ~= 1. Moreover,
as was noted above,apartfrom correlationfunctions which contain the C-ghost
increasingvertex, the ghostdiagramsfor the various ghost fields both boseand
fermi areequal. It follows that

c4= —c2. (7.11)

We thusobtain

~ = C1SyM+ c2[(6SYM/6A, A) + (K’, BC)] — [(M’, V’) — (U’, N’)]

—c1SYM+c2cr’[(K’, A) —(U’, V’)]. (7.12)

Here the standardsolution to the cohomology problem is exhibited, namely a
multiple of

5YM plusan exact form.
Wemustshowthat thesedivergenttermsmaybe cancelledby a renormalization

of the chargeandthe reducedset of fields that appearin 5’, eq.(6.6),

A=ZAAr, K’=ZK~K,~, C=ZcCr, L=ZLLr,

M’ = ZM~Mr’, V’ = Z
1,J”, N’ = ZN~IV’, U’ =Z~~U~’,

g=Zggr. (7.13)

The renormalizationconstantsZ, aredeterminedrecursively,andin loop order 1
are of the form Z, = 1 + 6Z. By comparisonwith eq. (6.6), we obtain for the
cancellationof the divergenttermsat ioop order 1, theconditions

+ ÔZ~,,= ÔZJ.,,~+ 6Z~,= 6Z~,+ = c2, (7.14)

~ (7.15)

To obtain the remainingconditions,we write
5YM SYM(A, g), which gives to

first order

SyM[(1+6Z4A, (1+6Z~)gJ =SyM(A, g)

+ 6Z~(A, 6~~YM/6A) + 6Z~gBS~~/Bg.

Moreover,SYM(A, g) is of degree2 in A and g’ which means

(A, 6~~YM/6A) — g3SyM/3g= 25YM~
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This gives

65YM = —26Z~SyM+ (6z~+ 6Z~)(A, 6SYM/6A),

andwe obtain the additionalconditionsfor cancellationof the divergencesat loop
order 1,

2ôZ~= c
1, 6Z~+ 6Z~= —c2, (7.16)

Theseequationsimply the exactrelationsamongthe renormalizationconstants,

~ (ZAZg)~
1, (7.17)

ZK~ZgZAZC= ZLZgZC2 = 1, (7.18)

which areconsistentwith eachother.
This establishesrenormalizabilityof the effectiveaction I” definedby

F’~S’+Fqu, (7.19)

andwhich dependson the reducedset of variables.To be explicit, we haveshown
that with the renormalizationconstantschosen recursively as describedabove,
Fr’(Xr), which is definedby

Fr’(Xr) =F’(X) (7.20)

is a finite function of its arguments.Here X representsthe reduced set of
unrenormalizedfields and the coupling constant, and similarly for Xr. This
completesstepone.

We nextverify that relations(5.7) and(5.8) amongthe original unreducedsetof
variablesmay be maintainedfor the renormalizedvariables.They are satisfiedif
we definethe renormalizationconstants

ZM=Z~,*=ZM~, ZJ,=Z~,=Z~,,, ZN—~Z,J=ZN~, Z~—Z~*—Z~j,

Zr,, ‘ZIcZK~, (7.21)

andprovidedthat the new condition

ZgZ~*Z~=ZK (7.22)

holds.Theseequationsimply the relationbetweenthe renormalizationconstants

of the elementaryfields,

Z,~Zç= ~ = Z~Z~ (ZAZg)~’, (7.23)

ZgZ,,,*Zçp = ~ (7.24)
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Becauseof the arbitrarinessin the renormalizationdueto conservationlaws,we
are free to impose

~ ~ (7.25)

which gives

Zq,*=Zq,=Zw*=Zw~Z~
1”2, (7.26)

(7.27)

wherewe have introducedthe standardnotationfor the ghostfield renormaliza-
tion constant.Upon multiplication of eq.(7.24) by Z~,we obtain

ZgZc=l, (7.28)

or

gC=g~C~. (7.29)

Geometricallythis meansthat the infinitesimal localgaugetransformationsgener-
atedby gC arenot renormalized.From eq.(7.18) we obtain also

ZKZA = ZLZC = 1. (7.30)

And finally, from eq.(7.23),we obtain

Zg= (Z~/2Z~)~, (7.31)

wherewe have introducedthe conventionalnotation

(7.32)

Eq. (7.31) is standard in the Landau gauge where Z = 1.
To completethe proof we shall establish renormalizabilityof the effective

action F, expressedas a function of the original variables.The original action 5,
definedin eq.(4.2), maybe written

s=S’+S
1,~,—[(M, V)—(U, N)], (7.33)

where 5’, is definedin eq.(6.6) anddependsonly on the reducedset of variables,
and S~is definedby

_S~~—(M~,g.4o)+(g4)<co*,V)+(U~,g4(w)+(gAXco*,N). (7.34)

Observethat ~ is invariantunderrenormalization,

S.~(X1)=S1~(X), (7.35)
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which is a consequenceof the Landaugaugeformula Zg = (Z~’2Z~Y~. It follows
that

Fr(Xr) ~F’(X) +S
1~(X) =F(X) + [(M, V) — (U, N)] (7.36)

is a finite function of its arguments.The term [(M, V) — (U, N)], which depends
only on the sources, mustbe addedto the original effective action F to obtain a
quantity which is made finite by the multiplicative renormalizationof chargeand
fields. This is a typical occurrence, when sources for composite fields are present
[6]. This completes the proof of renormalizabilityof the theorywith local sources

for composite fields of lower dimension.

8. Renormalization of the horizon condition

In this sectionwe shall show that the horizon condition gives a finite equation

when expressed in terms of renormalizedquantities. In a translation-invariant
theory the expectationvalueof the derivativeof a field vanishes.Consequentlythe

horizoncondition,eq.(2.12), may be written in termsof the physicalsources,eqs.
(4.3) and(4.4), as

(D~CP.~a~)= 6W/6M~aa~ = — 6F/6M~aüph = “~h,~a’ (8.1)

(sD,~w,.~a )= 6W/6V~aa~Ph= — 6F/6 V~aaph = Mph,,~aa. (8.2)

This may bewritten,

6[F+ (M, V) — (U, N)]/6M~a~~Ph= 0,

6[F+ (M, V) — (U, N)1/6V~aaIPh=0.

A striking simplicity now appears.For upon comparisonwith eq. (7.36), one
recognizesthat the quantityin squarebracketsequalsthe renormalizedeffective
action. So the horizon condition in terms of renormalizedquantitiesis not only
finite, but is given by the simplehomogeneousequations

6Fr/6Mr~aa~h=6F1/6Vrp~aa~h = 0. (8.3)

Remarkably,any other constanton the right hand side of the horizon condition
(1.1) would not give a finite renormalizedhorizon condition, and thuswould not
correspond to a critical point.

Wenext give the physical values of the renormalizedsources.From eq.(4.3) we
have

Mr,Phj.~vba(X)= l~c,Ph,~~b(x)= Z l/
2MPh~Pba(X)= _Z~_t/2Jh,~Pba(X)

= Z~~/‘2y1/2g_ 16~6b = ~ — 16~V6bc~. (8.4)
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Let a renormalizedBoltzmannconstantbe definedby

= Z3
1”2Z~1”2y~’2. (8.5)

Thenthe physical valuesof the renormalizedsourcesare

~‘1r,ph,pj,b”(X) = — ~c,Ph,~b (x) = ~ (8.6)

The physical value of all other sources is zero. Thus if y~’which hasdimensionsof
(mass)4, is given a finite value in physical units, then the renormalizedhorizon
condition, which is a finite equation in terms of the renormalizedquantities,
determinesa finite valuefor g~.

In the method of local sources,the renormalizationconstantshave the same
valueas in standard Faddeev—Popovtheory. (Different normalizationconventions
were usedin [3].) It follows that ~ satisfiesthe standardrenormalizationgroup

equation,

p.Bg~/3p.= 13(gr) = b
0g,.

3+ b
1g~

5+ .. (8.7)

From eq. (8.5) we obtain the correspondingrenormalizationgroup equationfor
1/2

Yr

= a(g~)y~~”2, (8.8)

where

ct(g~) (~)p.3[ln(Z
3Z~)]/3p.=a0g~

2+a
1g~

4+... (8.9)

andthe coefficientsare finite. The renormalizationgroupequationfor g~hasthe
familiar solution

gr=gr(AQCD/p.), (8.10)

where AQCD is a constant of integration. This equation may be invertedto give

A
0c~=p.f(gr). (8.11)

If we changeindependentvariable from p. to gr, the renormalization-group
equation for Yr takesthe form

f3(g~)3y~
172/3g~= a(g~)y~l/2. (8.12)

This gives

B(In y~l/2)/3g~= [13(gr)] ‘a(g~)= b
0’a0g~~+ O(gr), (8.13)
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which we write in the form

B[ln(y~1/2/g~c)]/Bg = h(g~) [13(gr)] 1ci~(g~)— b
0’a0gr

1] = O(g~), (8.14)

where

c=a
0/b0. (8.15)

This hasthe solution

Yr~
2= (A’QCD)2g~exp[f~dgh(g)J, (8.16)

where ~ is a new constantof integrationwith dimensionsof mass,which is
moreovera renormalization-groupinvariant.

The horizon condition determinesg,~= gr(yr). Moreover it is compatiblewith
the renormalization-groupequationsbecauseit is obtained, as we have shown
above, by renormalization of the unrenormalizedhorizon condition which is
renormalization-groupinvariant.This meansthatwe mayreplaceg~and Yr in the

equation g,~= gr(Yr) by their expressionsin eq. (8.10) and (8.16) and obtain a
consistentequationfor A QCD in terms of A’QCD. On dimensionalgroundsit can
only be of theform

AQCD = CA’QCD, (8.17)

wherec is a purenumberwhich is determinedby the horizoncondition.

We shall not trouble to write the homogeneousrenormalization-groupequa-
tions for the correlationfunctionswhich are the exactanalogof eq.(8.73) of sect.

8.10 of ref. [6].

9. Energy—momentumtensorandgluon condensate

The dimensionfulparameter~ in the action breaks dilatation invariance at
the tree level. We shall derive the energy—momentumtensor and identify the

gluoncondensate.
We usedimensionalregularization,andconsequentlywe requirethedimensions

of the fields in genericeuclideandimensionD. The formulas in sect.7 for D = 4
generalizeto

[A]=[q]=[q,*]=(D_2)/2, [A]=D/2, (9.1)

[w}+[co*]=[C]+[C*]=(D_2). (9.2)
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The dimensionof g is fixed by the condition that the classicalconnectionhas
dimensions of inverselength,so [gA] = 1, which gives

[g] = (4 —D)/2 e/2. (9.3)

From the C-ghostincreasingvertex,we obtain

[w*]=[C]=D_3. (9.4)

We againfix the remainingarbitrarinessin dimensionsby imposingthat the BRS
operator leavesdimensionsinvariant.This gives

[co]=[w*]=(D_2)/2, (9.5)

[C]=(D—4)/2= —e/2, [C*]=D/2. (9.6)

Thesedimensionsalso imply conditions(9.2) and (9.4), and give [gC] = 0 in all
dimensions.The dimensionof ~‘ is unchanged,

[yl/2j =2. (9.7)

We shall derive a Ward identity by the changeof variable[8]

(9.8)

in the partitionfunction

z=fd~exp[—S+(J~,~)]. (9.9)

Here the field P, representsall the elementaryfields, with sourcesJ~,and we
collectively denotethe dimensionsof the elementaryfields by

D~=_[I
1]. (9.10)

The action S is definedby

(9.11)

where
5ph is given in eq. (3.9b). The last term hereis the last term of eq.(7.36)

with the externalsourcesset equalto their physicalvalue.Finally w[r~] in eq.(9.8)
representsthe infinitesimal generator

w[r] fdDx (x){3~
16/6~D1— D

1D~3~P

16/6cP~)

+ ~ (9.12)
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where ~M(x) is an arbitrary infinitesimalvectorfunction, ~ = — ~ is the
generatorof spin transformationsfor thefield ~,, anda sumover i is implicit. The
generatorw[~] hasthe propertythat for ~~(x) of the specialform

(9.13a)

wherep’~,a- and T~ are infinitesimal and x-independent,with rA~~= —r~,w[t~]
generatesan infinitesimal translation,dilatation and(euclidean)Lorentz transfor-
mation, namely

w[~]’I1 = ~ + a-(x~3~+ D.)cI~~+ ~i~1~A(xA3,L~X,~BA + ~ (9.13b)

as is easily verified.
The changeof variable(9.8) is linear in 1 sothejacobianis a constant,andwe

have

0 = fdcI.’[—wS + (wcI~,J~)]exp[—S + (cJ~, J~)]. (9.14)

To obtain the Ward identity we evaluate

wS= fdDx w~1(x)6S/6P~(x)

= fd’~x~{3~~6S/6i, —3,~(D
1D~cP~6S/6k~)+

BecauseS is the integral of a local density L, we have

—

which gives

wS = fd°x ~~‘{—3A(3~i3L/83A~1)+ B~L

—a~[—BA(D1D/1,BL/33A1

1) + L — D

1aL — D— 1BAPjBL/BBAcIj]

+ ~BA[ ~ — (6K~3~Pe— AB~Ii)3L/33K~Ii]}. (9.15)

Herewe haveusedthe fact that L hasno explicit x-dependence,so

3,~L= 3~cI
13L/B.~I-,+

that L is a Lorentz scalar,so

0 = Zjp~A(I’j3L/3(bj + (~i,~A3K’ki+
6~3A~j — 6KA3~)3L/33K~,,
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andthat L hasengineeringdimensionD, so

DL =D~cJ’~3L/3P1+(D1+ 1)3~1BL/33~1+aL. (9.16)

Here a is the operator,

a 2y
1~’2c9/BYU2+ (�/2)gB/Bg, (9.17a)

so aL is the contributionto the engineeringdimensionof L that comesfrom the
dimensionfulcoupling constants.In euclideandimension D, it is customaryto
makethe substitution

g —~

where g is now a dimensionlesscoupling constant,so a takesthe form

a = 2Y1~”23/3y1~”2 + p.3/dp.E a~+ a~. (9.17b)

The term p.B/Bp. gives an anomalouscontributionto the generatorof dilatations,
in the sensethat it does not appear at tree level for D = 4, but the term
2Y1”2B/3Y’~2does.From eq.(9.15)we obtain

wS= fdDx ?7’~(—BAT~— 3A3KRKA~), (9.18)

where

~(3,~Ii
13L/33~cI’1+ 3A~

1)t3L/33,1Pt)— 6A~D~(3,~’J~t3L/3B,<’Pt + aL), (9.19)

and

RK~ j.L~Akj3L/33~Pj— 6K~D~’D~cI1~BL/3BAtE. (9.20)

The energy—momentumtensor T~,obtainedherewithout the use of the equa-
tions of motion, is symmetric,andits trace

= —aL (9.21)

would vanishin the absenceof dimensionfulcoupling constants.
Because~~(x) is an arbitrary infinitesimal function, eq. (9.14) gives the local

Ward identity,

—Z(3AT~+ 3A3KRKA~)

= 3~(6Z/6J
1)J, — D

1D~3~(6Z/8J

1J1) + ~ (9.22)
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The right-handside renormalizessince it merely effects the samelineartransfor-
mationon the renormalizedandunrenormalizedfields,which showsthat insertion
of the field BATA,~+ BABKRKA~gives finite correlationfunctions.

We shallnot attemptto “improve” the energy—momentumtensorby adding an
exact derivative, nor to obtain explicit renormalizedformulas for the energy—
momentumtensorsuchas is availablefor Acp4 theory[8]. Insteadwe shall exhibit
the integratedWard identity for dilatationswhich is insensativeto sucha change.

We contracteq. (9.22) with x~,and integrate.The term with ÔABKRKA,~gives no
contribution,andwe obtain

f&~xz(TAA)= _fd°xz(aL) = ~ (9.23)

Thus a global dilatation is obtained by insertion of —aS, which is minus the
contribution to the dimensionof the action which comesfrom the dimensionful

coupling constants.
The expectationvalue

= (a
7L) + (a~L> (9.24)

is also insensitiveto the additionof an exactderivativeto T~.This quantityis a
natural candidate for the gluon condensatewhich has been introduced with
successin hadronphenomenology[9]. From the action(9.11),we obtain

a~L= 2y
1”2A~(~— ~‘*),~‘ — 4fy/g2, (9.25)

andthe horizon condition(2.12) gives

<aWL) = 0. (9.26)

So this term doesnot contributeto the gluoncondensatenor to the cosmological
constant,eventhough a~,L is expectedto be importantin generatingdilatations.
We are left with

= <a~L). (9.27)

This quantitycontainsan explicit factor of e = 4 — D, asone seesfrom eq.(9.17).
Thereforeit is quite likely to be finite, whenevaluatedby dimensionalregulariza-
tion and continuedanalytically to D = 4, andexpressedin termsof the massscale
A

0~0which appearsin eq.(8.16). (A similar proposalappearsin ref. [4].) If so, a
direct link will havebeenestablishedbetweenhadronphenomenology[9] and the
global propertiesof the fundamentalmodularregion.
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10. Dipole ghost

In this section we will show that the propagatorof the Fermi ghostshas a
1/(q2)2 singularityat q = 0.

The horizoncondition,eq.(8.2), reads

Z_’ fdIi exp(_S)SD,~Cw*p~aC= ~ (10.1)

wheredcI representsintegrationover all fields, andthe sourcesareassignedtheir
physical values. Because the BRS operators is a derivative, we haveby partial
integration

Z1JdP (sS) exp(_S)D~w*,~ac=M~aa. (10.2)

With sS= —(M, sDq), this gives

((M, sD~,)D~w*~aC(x))+M,~jaa(X)= 0. (10.3)

We evaluatethis quantity by choosingfor the local source

= yl/2g_l~~,,3~aexp(iq .x). (10.4)

The limit q —~ 0, by which M approachesits physicalvalue,will be takenat the
end.It is convenientto define the propagatorof compositefields

G~”,~f~f(q) fdDx exp(— iq x)((D~w*j)O(x)s(D,.~cpj)C(0))

=fd’3x exp(—iqx)62W/6U~J(0)6N,~]’(x), (10.5)

where, aswe recall from sect. 2, the index i representsthe pair i = (v, b), and
similarly for j. In termsof GUN, the horizonconditiontakesthe form

~ +f=0. (10.6)

We nextderivesomepropertiesof GUN. We have

((D~w*j)”( x)s(DK
4OJ)C(0)) = ((D~w*j)~~(x)(DKwj)C(0)). (10.7)

Moreover,at every vertexon the to line which is continuousacrossevery graph,
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thereis a 6-functionon the i —j indices,whichcomesfrom U(f) invariance.Thus

GUN is of theform

= ô~J6”A~~(q), (10.8)

whereA,.~~(q)is an invariantLorentz tensor.
We nextusethe equationsof motion to determinethe longitudinalpart of GUN.

We have

q~GU~~d1~Jc(q)= _ifd’-~xexp(—iq .x) ((3. Dw*j)~~(x)(DKcoj)C(0))

= _if d’~xexp(_iq.x)Z1fd~

X6[exp( _S)]/6cof(x)(DKwj)C(0)

= if dDx exp(—iq .x)Z1fd~ exp(_S)6[(DKWJ)C(0)]/6w1(x),

which gives

UN a Cf \_~
~ Kj ~q, — ~ q~,

andso

= ~ + ~ (10.9)

where ~ is the part of GUN which is transverse on the p. and K

indices. With f = (N2 — 1)D, the horizoncondition, eq.(10.6)reads

~ + (N2 — 1)(D — 1) = 0. (10.10)

The crucial point in the evaluationof ~ is that only irreducible diagrams
contributeto it. For the only one-particleintermediatestateis the co-line, andthe
index i on the co-field is mute, so co is effectively a Lorentz scalar particle.
Thereforeany reduciblecontributionto G~,]~Kf(q)is, for example,of the form

~ = ~

which is purelylongitudinalon p. andv. Call FUN the one-particleirreduciblepart
of the GUN propagator.It may be derived from the generating functional for
one-particleirreduciblecorrelationfunctions,namelythe effectiveaction

= — fd°x exp(—iq x)S2F/6UK[(0)6N~j’~(x), (10.11)
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(Theminus sign is characteristicfor sourcesof compositefields.) Eq. (10.8) gives

= 6~)6~[f(q2)6~~+g(q2)q/~q~j. (10.12)

Fromthe horizoncondition(10.10),we conclude

f(0)=1. (10.13)

We now use the equationsof motion of to and to to translate this into a
conditionon the one-particleirreducibleco—co* propagatordefinedby

~ = fd”x exp[ —iq~(x _y)]62F/6cof(x)6w*f(y). (10.14)

Fromeq.(5.22),we have,with suppressionof indices,

62F/6wx6w*y= _,3Y . 62F/6co~3U~—gV~,X 62F/6co~6K~.

The secondtermvanishesfor physicalvaluesof the sources,andwe have

62F/6w~6w*~= 3Y . 62F/6U~6co~

3Y . 6/6Uy[_BX .6F/6N~+g(3.A~Xw~)_Dx(A)U~],

where we have used the equationof motion (5.26). For physical valuesof the
sources,this gives

_,9x . 3Y~(x— y) + 3X. 3Y . 6F2/6N~6U~,

= q28
11ô”~— ~ (10.15)

wherebythe factorizationof both externalghostmomentais manifest.This gives

Fw*wff(q) = q26..6ac[1 —f(q

2) — q2g(q2)].

Form the horizoncondition f(0) = 1, just derived, and under the assumption that
f(q2) andg(q2) areregularfunctionsof q2,weconcludethat at q = 0, the inverse
propagatorof the Fermighostis of order(q2)2,

= 6t~8~~O(q2)2. (10.16)

Remarkably, at q = 0, the quantum correctionsprecisely cancel the tree-level
contributionto the inversepropagatorof the Fermighost!
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The 1/(q2)2 singularity of the Fermi ghostpropagatorat q = 0 showsthat the
clusterpropertydoesnot hold. This may meanthat the vacuumis degenerateor
that the effective action[~ hasa stationarypoint 6Fr/61Pr = 0, at ~r * 0, where ~r
representsthe set of renormalizedelementaryfields.

11. Conclusion

The renormalizabilitywhich is establishedhere arguesstrongly for the consis-
tencyof the critical limit of lattice gaugetheorygiven in eqs.(1.1) and(2.1). It is
particularly striking that renormalizabilityof the horizoncondition holdsonly for
the particularvalue <h) f. Moreover, the dipole singularity of the Fermi ghost
propagatorfound in sect. 10 is a verification in detail of the hypothesesof ref. [3]
which leadto the critical limit, as we now explain.

The vanishingof the leading term in I~*(0c4f(q)at q = 0, found in sect. 10,

meansthat if the value f which appearsthe horizon condition (h) = f were any
larger, then this propagatorwould go negative.If that happened,it would indicate
that contributionsfrom configurationsoutsidethe Gribov horizon dominatethis
quantity.The fact that it is on thevergeof going negativesuggeststhat configura-
tions just at the horizon dominate the functional integral. This might seem
surprising. For recall that the propagatorof Fermi ghosts is the inverseof the
Faddeev—PopovoperatorM, which is positive insidethe Gribov horizon, so the
Boltzmann factor exp(— yH) which appearsin the partition function vanishes
exponentially as the horizon is approached.(In a perturbative expansion, the
horizon is alwaysapproachedfrom the interior.)Thus onemight expectthe system
to be stronglycontainedwithin the horizon.However, the possibility that configu-
rations on the horizon dominate the functional integral is consistentwith the

hypothesis of ref. [3] thatat largeeuclideanvolume V, the probability distribution
P(e) of the horizon function per unit volume h(x) is in fact concentratedjust at
the horizon. More precisely,it was proposedthat at large V, P(e) is of the form

P(e)=exp[Vs(e)], 0<e<f, (11.1)

where s(e)hasthe propertiesof entropyin classicalstatisticalmechanics,namely
s’(e) > 0 and s”(e) <0, which expresspositivity of the temperatureand heat
capacityrespectively.In this cases(e)has its maximum at the end point of the
interval, namelyat e = f, and as the volume V growswithout limit, the supportof
the probability distribution P(e) approaches the horizon. The Boltzmann factor

exp(— yH) modifies the distribution to

P(e) =exp(V[s(e) —ye]), 0<e<f. (11.2)

If Y is slightly larger than s’(f), then, at large V, the new distribution peaks
sharplyjust insidethe horizon,becauses(e) is monotonicallyincreasingand s‘(e)



510 D. Zwanziger / Renormalizabilityof thecritical limit

is monotonicallydecreasing.Thiscondition is assuredwhen y is determinedby the
horizonconditionwritten in the form <h> = f — e,where e approacheszero. Thus
the singularbehaviorof the Fermighostpropagatoris consistentwith theprobabil-
ity distribution being locatedpreciselyat the horizon in the infinite-volume limit.

In fact, the dipole singularity of the Fermi ghost propagatorsuggeststhat a
particular part of the horizon dominates the functional integral. Considerthe
expectationvalue

(w*(x)w(x)) = <M1(x, x; A)) =

wherethe eigenfunctionexpansionis at fixed A, andthe averageis the ensemble

averageoverA. By translationinvariancewe have

(w*(x)w(x)) = V1fd4x((w*(x)w(x))) = V1(~1/An).

With

(w*(x)w(y))=(2~r)4Jd4q exp[iq~(x—y)]D(q),

this gives,in the infinite-volume limit

(2~)4fd4qD(q) = j dA<p(A; A))/A = fdA p(A)/A =

where p(A; A) is the densityof levels per unit volume of M(A), in the infinite-
volumelimit, andp(A) is its ensembleaverage.The integraldivergesbecauseD(q)
hasa 1/(q2)2 singularity.Consequentlythe averagedensityof levels p(A) cannot
vanish as fast as any positive power of A and we concludethat p(O) 1 (or
greater),to within logarithmic factors.This is in markedcontrastto minus the
Laplace operator, for which the density of levels for positive A is given by
p(A) = const.X A. Thus the configurationsA which dominatethe functional inte-
gral, not only lie on the Gribov horizon where an eigenvalue is about to go
negative,but are thosewith the propertythat thereis a very strongaccumulation
of levels at A = 0. This is consistentwith the result in ref. [3]: “all horizonsareone
horizon” by which is meantthat for therelevantconfigurations,an infinite number
of eigenvaluesgo negativetogether. To be more explicit, in ref. [3], individual
eigenvaluesA~(A)of M(A) were trackedas A approachesthe Gribov horizon.
The horizon is definedby A

1(A)/A ~(0)= 0. [The rescalingby A ~(0)is necessaryto
compensatethe trivial vanishing of any finite numberof eigenvalueswhich is
presentalso for the Laplaceoperatorin the limit V —~ ~. Thereis also a trivial and
irrelevant eigenvalueA0(A)= 0 for all A, which correspondsto global gauge
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invariance.]It was found that in the limit V —~ ~, and for the relevantconfigura-

tions A, the condition A~(A)/A1(0)= 0 is satisfiedsimultaneouslyfor all finite n
when it is satisfiedfor n = 1. It was hypothesizedin ref. [3] that thesespecial
pointson the Gribov horizon,where“all horizonsareonehorizon” also lie on the
boundaryof the fundamentalmodularregion, andmoreoverthat the measureis
concentratedon this special part of the boundary. [The fundamentalmodular
region is the setof absoluteminima of the minimizing function definedin sect.2.
It is identified with the physicalconfigurationspacewhich is the quotientspace
U/G. The fundamentalmodular region is known to be smallerthan the Gribov
regionswhich is the set of relative minima. However, as shown by van Baal [10],
their boundarieshaven-dimensionalmanifoldsin common,for all integern, which
lie on a single gaugeorbit, and where the Faddeev—Popovoperator has n
vanishingeigenvalues.We refer to refs. [3,10] for a discussionof this interesting

geometricaltopic.] Thus the dipole singularity of the fermi ghostpropagatoris
consistentwith the hypothesisthat the measureis concentratedon that part of the
horizonwhere“all horizonsareonehorizon”.

[It is interestingto comparethe result p(O) 1 for the averagedensityof levels
of the Faddeev—Popovoperator-B. D with the analogouspropertyof the Dirac
operatory D, when chiral symmetry is spontaneouslybroken, as indicatedby a
non-zerovalue of the orderparameter(~* i/i). We have

(~*(x)~(x)>V1fd4x(Tr(m+y.D)I(x, x))

= v_lf d
4xKm trfm2 — (y .D)2] 1(x, x)),

wherethe traceis overspinor indices.Uponexpandingin termsof the eigenfunc-
tions of y D with eigenvalueiAn, we obtain

= mV1fd4x(E~n*(x)~n(x)(m2+ A~2)1)

=mV~E(m2+A~2)1) = mfdA<a-(A; A))(m2 +Am2)’

=mfdA o-(A)(m2+A2)’ = fda cr(mce)(1+a2)1,

whereo-(A; A) is the averagedensityof levels of the Dirac operator y D, and
cr(A) is its ensembleaverage.In the chiral-invariantlimit in — 0, this gives

(~/‘*(x)~1i(x))=n~a-(0)*0.
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Thusa non-zerovaluefor the chiral symmetrybreakingparametermeansthat the
averagedensityof levels at A = 0 of the Diracoperatora-(0) is of orderunity like
p(O).]

In a second-ordercalculation, Gribov [11also found a 1/(q2)2 singularity for
the Fermighostpropagator.He pointedout that the correspondingconstraintsin

the Coulomb gaugewould imply that the three-dimensionalFaddeev—Popov
propagatorbehavesat small q like 1/(q2)2 which correspondsto a linear increase

at largedistancesin position space.Moreover,in a non-abeliangaugetheory, the
Coulomb potential is replacedby the Faddeev—Popovpropagator,and Gribov
proposedthis as a possible confinementmechanism.(More recently he has
consideredalternative mechanisms[ii].) This is not implausible. However, the
Coulombgaugeis not renormalizable,and it remainsa challengeto demonstrate
that a confinementmechanismoperatesin the renormalizablegaugepresented

here.The elementsof a theoryof confinementappearto be at hand,becausethe
gluonpoleat k = 0 is eliminated by the proximity of the Gribov horizon in infrared
directions[12], and becauselong-rangeforces are present,as indicatedby the
1/(q2)2 singularity.

A step in this direction would be to verify that the gluon condensate[9],
identified as the trace of the energy—momentumtensor,is likely to be finite and
calculablein the presentscheme,as explainedat the end of sect. 9. This would
directly relatehadronphenomenologyto the horizonof the fundamentalmodular
region. Finally, we remark that the SU(2) gaugefield of the electro-weakinterac-
tions is also restrictedby the horizonthat boundsthefundamentalmodularregion,
so the resultsobtainedherearealso relevantin that theory.

The author wishes to expresshis appreciationto ProfessorNamyslowski for
stimulatingdiscussions,andfor making ref. [5] availableto him beforepublication.
He is grateful to the Max-Planck-Institutfür Physik andAstrophysik,Munich, for
its hospitality,where the work reportedherewascompleted,and for illuminating
conservations there with Erhard Seiler and Klaus Sibold.

Note addedin proof

The BRS invarianceof the Faddeev—Popovaction may be usedto prove not
only renormalizability, but also unitarity of the S-matrix. By contrast, in the
presentarticle, BRS invarianceof the modified actionhasbeenusedto proveonly
renormalizability. This is becausethe zero-ordergluon propagatork2[(k 2)2 +

Ny]1 has unphysical poles at k2 = ±i(Ny)1”2, correspondingto imaginary
(mass)2,so thereareno consistentphysicalpolesin any finite order of perturba-
tion theory. Moreover the exact asymptoticstatesof the theory are unknown.
Consequentlynothing canbe said at presentaboutunitarity of the S-matrix. The
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resolutionof this issuemay haveto wait for a solutionof theconfinementproblem,
and the constructionof physical hadronic states,both of which are beyondthe
scopeof the presentarticle.

References

[1] V.N. Gribov, Nuci. Phys.B139 (1978) 1
[2] D. Zwanziger,Nuci. Phys.B323 (1989)513
[3] D. Zwanziger,NucI. Phys.B378 (1992)525
[4] M. Stingl, Phys.Rev.D34 (1986) 3863
15] J.M. Naniyslowski,Non-perturbativeQCD methods,preprint,Univ. of Warsaw(1992)
[61J. Zinn-Justin,Quantumfield theory andcritical phenomena(Oxford Univ. Press,Oxford, 1989)

ch. 8 and 19
[7] C. Itzyksonandi-B. Zuber, Quantumfield theory(McGraw-Hill, New York, 1980)p. 591, andp.

601
[8] E. Krausand K. Sibold,Nuci. Phys.B372 (1992) 113
[9] M. Shifman,A. VainshteinandV. Zakharov,Nuct. Phys.B147 (1979)385,448, 519;

L. Reinders,H. RubinstemandS. Yazaki, Phys.Rep. 127 (1985) 1;
J.M. Namyslawski,in Quarksandnuclearstructure,ed.K. Bleuler(Springer-Verlag(Berlin), 1983)
LectureNotesin Physics197

[10]P. vanBaa!, Nuci. Phys.8369 (1992) 259
[11]V.N. GribOV, PhysicaScnptaT15 (1987) 164; Possiblesolution of the problemof quark confine-

ment,LundUniversitypreprintLU TP91-7, March1991
[12] D. Zwanziger,Phys.Left. B257 (1991) 168; NucI. Phys.B364 (1991) 127


